I've built a simple app in Python, with a front-end UI in Dash.
It relies on three files,
- small dataframe, in pickle format ,95KB
- large scipy sparse matrix, in NPZ format, 12MB
- large scikit KNN-model, in job lib format, 65MB
I have read in the first dataframe successfully by
link = 'https://github.com/user/project/raw/master/filteredDF.pkl'
df = pd.read_pickle(link)
But when I try this with the others, say, the model by:
mLink = 'https://github.com/user/project/raw/master/knnModel.pkl'
filehandler = open(mLink, 'rb')
model_knn = pickle.load(filehandler)
I just get an error
Invalid argument: 'https://github.com/user/project/raw/master/knnModel45Percent.pkl'
I also pushed these files using Github LFS, but the same error occurs.
I understand that hosting large static files on github is bad practice, but I haven't been able to figure out how to use PyDrive or AWS S3 w/ my project. I just need these files to be read in by my project, and I plan to host the app on something like Heroku. I don't really need a full-on DB to store files. The best case would be if I could read in these large files stored in my repo, but if there is a better approach, I am willing as well. I spent the past few days struggling through Dropbox, Amazon, and Google Cloud APIs and am a bit lost. Any help appreciated, thank you.