There is nothing out of the box but we can calculate it from the formula in a custom metric.
The basic classification link you supplied is for a multi-class categorisation problem whereas the Matthews Correlation Coefficient is specifically for binary classification problems.
Assuming your model is structured in the "normal" way for such problems (i.e. y_pred
is a number between 0 and 1 for each record representing predicted probability of a "True" and labels are each exactly a 0
or 1
representing ground truth "False" and "True" respectively) then we can add in an MCC metric as follows:
# if y_pred > threshold we predict true.
# Sometimes we set this to something different to 0.5 if we have unbalanced categories
threshold = 0.5
def mcc_metric(y_true, y_pred):
predicted = tf.cast(tf.greater(y_pred, threshold), tf.float32)
true_pos = tf.math.count_nonzero(predicted * y_true)
true_neg = tf.math.count_nonzero((predicted - 1) * (y_true - 1))
false_pos = tf.math.count_nonzero(predicted * (y_true - 1))
false_neg = tf.math.count_nonzero((predicted - 1) * y_true)
x = tf.cast((true_pos + false_pos) * (true_pos + false_neg)
* (true_neg + false_pos) * (true_neg + false_neg), tf.float32)
return tf.cast((true_pos * true_neg) - (false_pos * false_neg), tf.float32) / tf.sqrt(x)
which we can include in our model.compile
call:
model.compile(optimizer='adam',
loss=tf.keras.losses.binary_crossentropy,
metrics=['accuracy', mcc_metric])
Example
Here is a complete worked example where we categorise mnist digits depending on whether they are greater than 4:
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
y_train, y_test = 0 + (y_train > 4), 0 + (y_test > 4)
def mcc_metric(y_true, y_pred):
predicted = tf.cast(tf.greater(y_pred, 0.5), tf.float32)
true_pos = tf.math.count_nonzero(predicted * y_true)
true_neg = tf.math.count_nonzero((predicted - 1) * (y_true - 1))
false_pos = tf.math.count_nonzero(predicted * (y_true - 1))
false_neg = tf.math.count_nonzero((predicted - 1) * y_true)
x = tf.cast((true_pos + false_pos) * (true_pos + false_neg)
* (true_neg + false_pos) * (true_neg + false_neg), tf.float32)
return tf.cast((true_pos * true_neg) - (false_pos * false_neg), tf.float32) / tf.sqrt(x)
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='relu'),
tf.keras.layers.Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam',
loss=tf.keras.losses.binary_crossentropy,
metrics=['accuracy', mcc_metric])
model.fit(x_train, y_train, epochs=5)
model.evaluate(x_test, y_test)
output:
Epoch 1/5
60000/60000 [==============================] - 7s 113us/sample - loss: 0.1391 - acc: 0.9483 - mcc_metric: 0.8972
Epoch 2/5
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0722 - acc: 0.9747 - mcc_metric: 0.9495
Epoch 3/5
60000/60000 [==============================] - 6s 97us/sample - loss: 0.0576 - acc: 0.9797 - mcc_metric: 0.9594
Epoch 4/5
60000/60000 [==============================] - 6s 96us/sample - loss: 0.0479 - acc: 0.9837 - mcc_metric: 0.9674
Epoch 5/5
60000/60000 [==============================] - 6s 95us/sample - loss: 0.0423 - acc: 0.9852 - mcc_metric: 0.9704
10000/10000 [==============================] - 1s 58us/sample - loss: 0.0582 - acc: 0.9818 - mcc_metric: 0.9639
[0.05817381642502733, 0.9818, 0.9638971]